\qquad
\qquad
Day 1: Introduction to Functions
Aim: What is a function and how can we identify one?

Introduction to Functions

A relation is a set of ordered pairs. A function is a relation in which each input value, or x-value, corresponds to exactly one output value, or y-value. A function or other relation can be represented as a set of ordered pairs in a table, as an equation, or by a graph.

The relationship represents a function if each input value is paired with only one output value.

Example 1: Determine whether each relationship is a function. Justify.
a:

Input	Output
5	7
10	6
15	15
20	2
25	15

b:

x	y
1	10
5	8
4	6
1	4
7	2

Example 2: Determine if the relationships below represent the graph a function? Justify.
Hours Studied and Exam Grade

Graphing Linear Functions

When the graph of a relationship is a line, the equation is a linear equation. Since there is exactly one value of y for each value of x, the relationship is a function. It is a linear function because its graph is a non-vertical line.

Example 3: Graph the function $\mathrm{y}=\mathrm{x}+3$
Step 1:Create a table.
Step 2: Pick input values (x) to find the output values (y).
Step 3: Graph the ordered pairs.

\mathbf{x}	$\mathbf{y}=\mathbf{x}+\mathbf{3}$	\mathbf{y}	$\mathbf{(x , y)}$
$\mathbf{- 2}$	$(-2)+3$	1	$(-2,1)$
$\mathbf{- 1}$			
$\mathbf{0}$			
$\mathbf{1}$			
$\mathbf{2}$			

* A solution to the function is any point that lies on the line.
\rightarrow Is $(-4,-1)$ a solution for this linear function? Justify.
\rightarrow Is $(10,15)$ a solution for this linear function? Justify algebraically.

Examples:

1. Complete the table and graph the function $y=-3 x+1$.

\mathbf{x}	$\mathbf{y}=-\mathbf{3 x}+\mathbf{1}$	\mathbf{y}	(\mathbf{x}, \mathbf{y})

2. Is $(-12,35)$ a solution to the previous linear function? Justify.
3. Tell whether each relationship is a function. Justify.
a:

Input	Output
1	6
2	7
3	7
4	6

b:

x	y
-1	14
0	15
1	16
-1	17

c: $\quad\{(2,1),(4,2),(6,3)\}$

On your own!

(\#1-2) Determine whether each relationship is a function. Explain.
1.

Input	Output
52	53
24	24
32	32
17	17
45	45

2.

\mathbf{x}	\mathbf{y}
14	52
8	21
27	16
36	25
8	34

3. Which of the following graphs represent a function? Justify your answer.

4. Which set of ordered pairs represent a function?
a: $\quad(-2,1),(0,1),(1,-2),(3,4)$
b: $\quad(-1,5),(-2,3),(-2,1),(-3,-1)$
c: $\quad(12,36),(9,27),(-6,30),(9,18)$
d: $\quad(3,17),(-2,11),(1,8),(3,5)$
5. Which table does not represent a function?
a:

\boldsymbol{x}	7	8	8	9	10
\boldsymbol{y}	7	14	21	28	35

c:

\boldsymbol{x}	-8	-4	0	4	8
\boldsymbol{y}	2	0	-1	-3	-5

d:

\boldsymbol{x}	-10	-5	0	5	10
\boldsymbol{y}	5	5	5	5	5

6. Is the relationship in the graph a function? Justify.

Weights and Shipping Costs

7. Given the function $\mathbf{y}=\mathbf{- 2 x}+\mathbf{1}$, is $(-13,27)$ a solution to this function? Justify.

